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Abstract

Formation and growth of diffuse necks in thin metal rings undergoing high-rate radial expansion under plane
strain conditions is studied numerically. The material is described by an elastic—viscoplastic internal variable
constitutive relation, so that failure by nucleation and void-growth is taken into account. Adiabatic heating due to
plastic dissipation is also incorporated. The influence of imperfections in the form of non-uniform wall thickness
and of variations in constitutive parameters is studied. The computations show that long wavelength thickness
imperfections gradually increase in amplitude after some initial inelastic deformation but do not result in highly
localized neck formation. Instead, a critical, nearly periodic mode with short wavelength appears at rather large
overall strain levels. It is from this critical mode that complete ductile failure develops. © 2000 Elsevier Science Ltd.
All rights reserved.

1. Introduction

The term ‘unstable neck formation’ in the present context is meant to emphasize the difference
between certain cases of dynamic necking and cases with slow loading relevant for radial expansion and
subsequent fragmentation of rings and shells. The famous paper by Mott (1947) containing semi-
empirical relations regarding fragment size appears to be one of the first to systematically address the
fragmentation process in cylindrical shells. During radial expansion of ductile cylindrical shells or rings,
deformation is often found to proceed more or less homogeneously within the plastic range until it is
interrupted by the emergence of diffuse necks. It is from these necks that final failure eventually
develops. For such structures, an understanding of the role of dynamic necking may be important for a
complete description of fragmentation.
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Under quasistatic plane strain tension, the critical mode for diffuse necking in hypo-elastic rate-
independent plastic slabs is the longest wavelength mode. This means that necking is normally initiated
at tensile strain levels higher than N where N is the strain hardening exponent for power law hardening
materials or in general, that necking occurs shortly after maximum load point has been reached (cf Hill
and Hutchinson, 1975). How much higher than this value the critical strain level can be depends on the
aspect ratio of the slab; long thin slabs develop a long wavelength diffuse neck at strain levels slightly
higher than this value when an imperfection is present that can trigger this first available bifurcation
mode. The situation is different for slabs of a hypo-elastic viscoplastic material in that true bifurcation
modes are not available at realistic stress levels, but the imperfection sensitivity underlying both rate-
independent plastic and slightly viscoplastic material behavior leads to a similar type of diffuse neck
when a long wavelength surface imperfection is present. In a material which is slightly rate-sensitive, the
critical strain level needed for this type of necking to occur is slightly higher than that found for the
corresponding rate-independent case (cf Hutchinson and Neale, 1977).

When the deformation proceeds very rapidly so that material inertia plays a role, necking follows
different routes and the formation of one or more necks has been reported for plane strain tension
conditions. Necking under dynamic conditions has been studied recently by Knoche and Needleman
(1993) for the case of high-rate tension of a round bar. In this study, the size-scale dependence of
necking was emphasized and the formation of two necks was demonstrated. Under plane strain
conditions necking in planar tensile bars and radially expanding rings was studied by Han and
Tvergaard (1995) using rate-independent plasticity. Their study showed that sinusoidal thickness
imperfections with long wavelength led to multiple necking, but surface imperfections with shorter
wavelength leads to necking at the thin points. Needleman (1991) found that inertia slows down neck
development and lowers stress triaxiality in the neck center. An analysis of the bifurcations available for
a thin block undergoing constant rapid expansion shows that long wavelength modes are suppressed
since their rate of formation is too slow because of inertial resistance (cf Serensen and Freund, 1997).
This analysis also indicates that a general type of unstable necking behavior should be considered for
cases with high kinetic energy and/or at high strain.

The present simulations of radially expanding rings may be viewed as a two-dimensional
simplification of the Mott problem with radially expanding cylinder shells, so that only a two-
dimensional segment of a ring is studied, rather than a three-dimensional cylindrical shell. The focus is
on the appearance and development of diffuse necks in a ring segment. The aim is to reveal the common
features of dynamic neck formation for the cases studied.

2. Problem formulation and method of analysis

2.1. Field equations

The boundary value problem for a segment of a radially expanding thin ring is analyzed below. The
ring is characterized in the undeformed state by mean radius Ry, wall thickness /4 and the segment has
angular extent 0y = n/k, for integer k. The segment occupies the region (x!)* + (x2)*> = with Ry —
h/2<r<Ry+h/2 and x’cos 0y<x'sin 0, relative to a Cartesian coordinate system x’ of material
particle labels with origin at the center of the ring. Due to the assumed symmetry, the segment is subject
to the following boundary conditions in terms of displacements u; and nominal tractions 7" referred to
the material:

=0, T'=0 onx>=0 (1)



N.J. Sorensen, L.B. Freund | International Journal of Solids and Structures 37 (2000) 2265-2283 2267
uysinOp —uy cos 0 =0, T'cosOy+ T?sin0p=0 onx>cosby=x"sinb 2)

The balance of momentum is enforced in weak form by means of the principle of virtual work

y . . 9%ut
J on,; dV = J T ou; dS+J pof 'Ou; dV — J po—uéui dv 3)
14 ! s 14 s

Here V' and S refer to volume and surface of the material, respectively, in the reference configuration.
The covariant components of the Lagrangian strain tensor are denoted #; and the contravariant
components of Kirchhoff stress are denoted by t7. The mass density at time =0 is p, and J is the
variational operator. The stress and strain tensors in (3) are

y ) 1
= (po/p)o", ny=7 (ui,/ + i + uf?ﬂw) )

2
with p denoting current density and a comma denoting differentiation with respect to position in the
reference configuration, and ¢¥ is Cauchy stress.

2.2. Material model

The material model applied here represents a ductile metal which is described by an elastic—
viscoplastic internal variable constitutive equation accounting for failure by void nucleation and
subsequent growth (cf Gurson, 1976). The incremental form of the constitutive equation using Cauchy
stress o is

5 — Rijkl’;]k]"_ Gg (5)

Here, RV denotes the instantaneous elastic stiffness tensor, (.) and (A) denote the material time
derivative and the objective derivative in the sense of Jauman, respectively, and ¢ denotes a viscous
volume stress rate accounting for viscoplasticity, failure and adiabatic heating effects. The stress rates
are related through

& ="+ (G +G "o, ©)

The constitutive eqn (5) follows from the elastic constitutive equation
Y= Ri/k[(’?k/ - "1;:1 - "1;1) ™

where the difference between the total strain rate 7, and the sum of the viscoplastic strain rate n and
the thermal strain rate nk, is the elastic strain rate, so that (7) is an incremental linear hypo- elast1e
relation. The moduli in this relation are

Rt/k] E |:

366 G G + G*’G“} ®)

2 1—2v

where the metric tensor in the current configuration has contravariant components G/ and E and v are
Young’s modulus and Poisson’s ratio, respectively. The metric tensor G of the current configuration is
related to the Lagrangian strain by

1
ny = (G = &) ©)
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with g; denoting the reference configuration metric tensor, so that the density ratio in (4) is
— == (10)

where the determinants of the metrics in the current and reference configurations are G and g,
respectively.

The inelastic material model follows a general framework for internal variable constitutive equations
(cf Rice, 1971). The plastic strain rate is taken to follow a relation of the form

: 0D
.p_
My =435

(11)

with A denoting a plastic multiplier and ® denoting a potential function which in the present case is of
the form

2 3¢20h
o="2J¢ 4 2qucosh<£> PP -1=0 (12)
agf 20’f

The flow strength (in an average sense) is denoted by &y, the Mises stress by o, the stress deviator by s¥
and the hydrostatic stress by oy,; the definitions are
2 _ 3 i i i g L

ae—ia Sij, sV =0"—0op,GY, O'h—go'i (13)
The scalar internal variable f'in (12) incorporating failure is identified as the ‘void volume fraction’ since
failure in the Gurson model is described in terms of the idealized behavior of spherical voids.
Furthermore, the parameters ¢; and ¢, were introduced by Tvergaard (1982), on the basis of numerical
results obtained from analyses of void sheets (see also Tvergaard, 1990 for an overview). (Here, ¢; =
1.25 and ¢, = 1.0). The evolution equation incorporates two effects. The rate of change of void volume
fraction is written as the sum of two terms,

f = fgrowth +fnuclealion (14)

where the first term relates to the growth of the spherical voids and the second term addresses the
nucleation of new voids at inhomogeneities which are present with the initial volume fraction f.
Nucleation is assumed to be governed by a strain-level criteria based on a normal distribution with
mean strain value ey and standard deviation sy (cf Chu and Needleman, 1980). The evolution equations
for the two contributions in (14) are

oot = (1 =) (15)

and

2
. fo 1[{& —ex P
fnucleation = eXp| — 5 & (16)

SNy 21 AN

Here, the matrix average effective plastic strain rate is to be viewed as the average of the effective plastic
strain over the matrix part of the material (that is, the part of the material volume not occupied by
voids).
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From the relation (11) for the viscoplastic flow rule (12), the multiplier J is obtained from a balance

between plastic work rate a’fﬁfj and the mean plastic work rate over a reference volume. Only the matrix
part contributes to the mean plastic work rate so that

i = (1 — e (17)
Thus,
: (1 — fase
A= 7(7[/ 7P (18)
ol

In addition to the balance of momentum, as expressed by (3), the balance of energy must also be
enforced. Under the assumption of adiabatic conditions, the energy balance may be approximated by a
statement of the form

aT
Po, = XTU”I:; (19)

where ¢, is the heat capacity, T is the temperature, y is the fraction of plastic work converted to heat
and 1'15 is the viscoplastic strain rate.
An average plastic strain rate is specified to be

. — 1/m
P (ﬁ) (20)

with m denoting the strain rate hardening exponent and g denoting a yield strength of the matrix
material at the reference strain rate &. The yield strength function is assumed to follow a power law of
the form

(@, T) = (01 — oo exp (— BT)) (14 /20)" @1)

with strain hardening exponent N, yield strength parameters oy, 0pp and f5, temperature 7 in °C and
& = g(0, 20)/E. Also, to complete the specification of the constitutive model, the thermal strain rate 1'7;,
in (7) is given by

iy = oGyT (22)

where « is the coefficient of thermal expansion.

2.3. Impulsive loading

The ring is subjected to a radial body force impulse with components f

i Fsin(nt/to)xi/1’ 0<r<
! _{0 t>ty (23)

where F is the amplitude and ¢j is the duration of the loading.
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2.4. Numerical procedure

The numerical method used in the analysis of the boundary value problem is a finite element method
based on direct discretization of (3) using quadrilateral elements consisting of four crossed triangles to
avoid locking (cf Nagtegaal et al., 1974). Time integration follows an explicit Newmark time integration
scheme (cf Belytschko et al., 1976) with lumped mass matrix M (cf Krieg and Key, 1973). The
discretized form of (3) is

M-D=-F +F, +F; (24)

where D denotes nodal displacements, the nodal forces F|, F, and F3 represent the discretized forms of
the internal virtual work term, the surface integral and the volume load integral, respectively, in Eq. (3).
The Newmark scheme may be written as

DA — o L HOAs 4 [(1/2 kz)D(t) n kzD(rJrAt)](A ) (25)
]-j(r+At) —M-D. (F(zH-Ar) +F; (t+A1) F(IH—Ar)) (26)
I-)(1+At) _p¢ + [(1 . kl)D + le(H_AI)]AZ (27)

The choice k, =0 gives an explicit time integration from the state at time ¢ to 7+ Ar without any
stiffness matrix computation or iteration. The parameter k; is chosen to be 1/2. Time-stepping starts
with updating D, and the F-vectors are computed. The next step is the computation of the nodal
accelerations using the lumped (diagonalized) mass matrix and these accelerations are used to update the
nodal velocities. The size of the allowed time step is restricted by the smallest element with height d., so
that

At < {d./cq (28)

with ¢q denoting the speed of elastic dilatation waves and { denoting a constant smaller than unity.
The explicit time integration procedure is combined with a rate-tangent modulus method (cf Peirce et
al., 1983) to stabilize the step size in integration of the Gurson model. The rate-tangent modulus method
uses a linear interpolation to compute the constitutive quantities somewhere between ¢ and ¢+ Az. The
effective inelastic strain rate s used in computing the constitutive quantities is written as
-P(t+At)

_(1—0)9(1)4-9_ (29)

. . . . =P . . . =P(t+A
where the effective inelastic average strain & (¢) at time ¢ is computed directly by (20) and & (a0 may be

expressed in terms of the quantities known at time ¢, the interpolation parameter 0, and the time step
At, so that the final form of the constitutive equation is an incremental linear form.

2.5. Thickness imperfections

The surface imperfections are chosen to be sinusoidal variations in wall thickness since interest in the
present study is on diffuse necking. The imperfections on the ring segments to be analyzed here are
chosen so that they correspond to some of the modes that are first available for bifurcation in the rate-
independent, incompressible quasistatic case of plane strain tensile test (cf Hill and Hutchinson, 1975).
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The surface imperfections are taken to be thickness variations of the form
h = ho[1 —2¢ cos (nn0/0p)] (30)

where 0 is the angular position around the circumference, Ay is the initial mean thickness, ¢ is the
dimensionless imperfection amplitude relative to the half-thickness and » is the integer mode number.

3. Results

For all cases of ring expansion reported here, 0, is assumed to be 7/8, implying that one-sixteenth of
the full circumference of the ring is considered. This appears to be a sufficiently large sector to
demonstrate the unstable necking phenomenon that is the focus of this study. However, within this
sector, the influence of variations in geometrical or material parameters is considered. Unless otherwise
noted, the material is assumed to be a pressure vessel steel (A533 grade B) which has been thoroughly
characterized by Naus et al. (1989). The values of the parameters appearing in the constitutive relations
presented above are: E = 2.069 x 10" Pa, v = 0.3, N = 0.1, gg; = 374.87 x 10° Pa, 6p» = 59.89 x 10°
Pa, f = 0.007933/°C, m = 0.002, « = 1.1 x 107°/°C, ¢, = 465 J/kg - K, fo = 0.002, ex=0.3, sy =0.1,
¥ =0.9 and & = 1 s~'. The initial temperature is T,=20°C, the initial density is po = 7850 kg/m?, the
rate tangent modulus method parameter is chosen to 6, = 0.9 and the Courant criteria (28) is fulfilled
with { =0.25; however, most frequently, the stable step size is set by the rate tangent modulus
procedure for integrating the constitutive response. The impulsive loading (23) is specified by the
amplitude F = 10® N/kg and duration 7y = 10 us. Prior to action of this impulse, the material is stress
free and at rest; see Fig. 1. This impulse would result in a radial particle velocity of approximately 637
m/s in the absence of any material resistance. Concerning the initial imperfections in wall thickness, the
values n = 1 and & = 0.01 are assumed for each case unless alternate values are given. The finite element
mesh used for the computation consisted of a 5 x 288 array of quadrilaterals, each divided into four
triangular elements formed by the diagonals, unless stated to the contrary.

time

Fig. 1. Schematic drawing illustrating the present impact problem for a thin ring with mean radius Ry and thickness /. Only a seg-
ment of angular dimension 0y = 22.5° is analyzed numerically.
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Eight contour plots showing level curves of effective plastic strain after an elapsed time of
approximately 100 us from onset of loading are shown in Fig. 2. In all these cases, the thinner portion
of the ring, near 0 = 0, is at the right end of the figure. Fig. 2(a) represents the result of the calculation
for the default values of the material parameters and other features. For purposes of comparison, the
other parts of Fig. 2 indicate the influence of changes in parameters: in Fig. 2(b) the thermal softening
has been precluded by setting y = 0; in Fig. 2(c) the strain hardening exponent is reduced to N = 0.05
(from 0.1); in Fig. 2(d) the strain hardening exponent is N = 0.2; in Fig. 2(e) the imperfection amplitude
is reduced to &=0.001 (from 0.01); in Fig. 2(f) a finer mesh consisting of an array of 10 x 576
quadrilaterals was used (instead of 5 x 288); in Fig. 2(g) the imperfection mode number is n = 2 (instead
of n =1); and in Fig. 2(h) the imperfection mode number is n = 3.

From this comparison, several qualitative features of behavior are evident. For example, decreasing
(2c) or increasing (2d) the hardening exponent N by a factor of two has a significant influence on
dynamic necking. On the other hand, thermal softening (2b) seems to play a very minor role in the
process. It is noted that the influence of failure by void growth is similar to that of thermal softening,
and the results of computation with vanishing density of void-nucleating inhomogeneities fy = 0 are
nearly indistinguishable from those in Fig. 2(a). In general, the fully developed necks in Fig. 2(a)—(d) are
at approximately the same sites on the ring, but variations from the default case (2a) obviously exist at
a fine scale. The results in Figs. 2(e), (g) and (h) illustrating sensitivity to the parameters used to
characterize the imperfection indicate a significant dependence of unstable necking on the surface
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Fig. 2. Contour plot of effective plastic strain ¢” showing unstable necks developed in rings with //Ry = 1/70. The angular pos-
ition varies from 0 = 0 at the right end of each ring segment to 0 = 22.5° at the left. (a) Default case based on material parameters
for a pressure vessel steel, £ =0.01,n =1 and 5 x 288 mesh. The other figures show results obtained by parameter changes from
the default case in Fig. 1(a). The parameters changed relative to the case in Fig. 2(a) are: (b) y = 0 (no heat condition); (¢) N =
0.05 (reduced hardening); (d) N = 0.2 (increased hardening); (¢) & =0.001,n=1; (f) 10 x 576 mesh; (g) n=2,¢ =0.01; (h)
n=3,¢£=0.01.
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imperfection. Although multiple necks developed in each of these cases, the distribution varied strongly
with mode number n. Finally, the effect of increasing the mesh resolution (2f) from the default case is to
produce a somewhat different neck array, but the salient features are unaltered as described further
below.

The results here are all results of high amplitude impulsive loading so that the nominal hoop strain
rate is essentially constant, as illustrated in Fig. 3 in the form of graphs of (R — Ry)/Ry vs time ¢. Of the
various parameters which influence the strain rate, strain hardening variations have the largest influence;
other parameter variations for the rings with /y/Ry = 1/70 all result in curves between those for N = 0.1
and N = 0.05. The average true strain rate R/R vs time ¢ is shown in Fig. 4.

In the discussion which follows, a necking process is described as stable if necks form at sites where
the wall thickness is minimum and if they grow at rates comparable to the rate of background
deformation. On the other hand, a necking process is described as unstable if necks form at sites other
than the locations of minimum wall thickness and if they evolve rapidly compared to the rate of
background deformation. Some processes involve formation of necks of both types, and these are
described as being nearly stable if neither type is clearly predominant.

To explore the evolution of the phenomenon of unstable necking, a normalized strain rate parameter
¢q is introduced. This quantity is defined on the reference midsurface of the ring, and its value is equal to

0 20 40 60 80
: | I I | ' I | | I I | I | I I 1 1 1 U I 1 | d
[ N=0.1 i
0.60 |- > —10.60
B N=0.05 AN ]
i Nl N=02
0.50 |- — 0.50
0.40 [ ~0.40
ARR, [ y
0.30 |- —0.30
0.20 |- —0.20
0.10 —o0.10
0.00 B 1 | | I 1 | | | I 1 1 1 | I | | 1 | I ! 1 ]
0 20 40 60 80 0.00
time (us)

Fig. 3. Average nominal hoop strain AR/Ry = (R — Ry)/Ry as a function of time for different rings.
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Fig. 4. Average strain rate R/R as a function of time for different rings.

the thickness average of the effective inelastic strain rate at that point, normalized by the average
background strain rate over the entire solid (R/R). With this definition, ¢ is a function of initial position
0 around the ring and elapsed time 7. Thus, the evolution of unstable necks can be observed in a
contour plot of ¢(6, 1) in the 0, t-plane. Such a plot for the default case is shown in Fig. 5 and features
of behavior can be discerned from it. Initially, the deformation is elastic, including some oscillations
reflecting non-uniform momentum distribution due to the imperfections present and also including
numerical effects resulting from the discretization; much of this portion of the response is excluded from
the contour plots in order to focus on the inelastic deformation. As the deformation becomes inelastic,
the oscillations are rapidly damped. After an elapsed time of about 20 us, the plastic strain rate is fairly
uniform around the circumference, but slightly larger in the vicinity of the thinner part of the ring. At
this point, it appears that a neck will form at the thinner section and that this section will be the
eventual failure site.

However, this pattern is perturbed after about 50 us by the emergence of a localized neck-precursor at
about 0 =9°. Within a short time, a cascade of more or less regularly spaced zones of plastic strain
localization appear which leads to a global array of neck-precursors; these are the necks evident in Fig.
2(a) at time ¢ = 79us. It is noted that the necks are developed to different strain levels in spite of the
regularity of the spatial distribution of the neck precursors.
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Fig. 5. Neck development in terms of level curves of ¢, a normalized inelastic strain rate, over the 0, z-plane for case (a) in Fig. 2
(pvs-data, ¢ = 0.01, n=1 and 5 x 288 mesh). At the time # = 7.86 x 107> s, the deformation state in Fig. 2(a) is reached.

Plots similar to Fig. 5 showing the evolution until the states illustrated in Fig. 2(c)—(f) show the same
basic features of an unstable dynamic necking process. Only one additional case is illustrated here,
namely the evolution prior to the state in Fig. 2(e) is shown as Fig. 6. The common features among all
these processes are that, after some initial elastic oscillations, a non-localized zone of thinning appears
(the dark parabola-shaped regions appearing at about = 17 us in Figs. 5 and 6) and grows relatively
slowly. Later in the deformation, a cascade of localized instabilities appears in the form of a global
neck-precursor mode with a nearly constant spacing of localization sites around the circumference. Fully
formed necks evolve from some, but not all, of the neck-precursor sites which are evident in Figs. 5 and
6. Within these sites, ¢ is localized within a region of fixed size roughly equal to % in 6 but in which ¢
increases rapidly in ¢.

If all system parameters except the strain hardening exponent N are fixed at the values corresponding
to the default case, and the sensitivity of the response to variations in the value of N is probed, then a
significant variation in response is observed. If N is varied from 0.05-0.2 (the default value is 0.1), then
only small variations in the distribution of necks around the circumference are found. The process of
evolution of the neck array is also relatively insensitive to variations in N within this range. However, if
N is increased to 0.25, necks are found to develop only in the thinner portion of the ring near 8 = 0 (cf
Freund and Serensen, 1997). On the other hand, the spacing of those necks which do form is roughly
the same as for the lower values of hardening rate. It should be noted that the features being discussed
here are quite coarse over the range of values of ¢, and more differences between the contour plots for
different cases are evident if more closely spaced contour levels are used. Various numerical simulations
were carried out to estimate the sensitivity of the contour plots to variations in system parameters. For
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Fig. 6. Contours of constant normalized inelastic strain rate ¢ over the 0, f-plane. End-state corresponds to case (e) in Fig. 2 with
¢ =0.001,n =1 (smaller imperfection).

example, a comparison of results obtained with N = 0.1 and N = 0.101 showed virtually no differences
when represented by contour levels of ¢ incremented by 0.02.

It is evident from Fig. 2(e) that the amplitude ¢ of the imperfection has an influence on the details of
multiple neck formation and, likewise, from Fig. 2(f) that the mesh size has an influence. These features
will have to be pursued through systematic parametric studies in order to sort out the details. The
important point to be made is that the general features of evolution of a nearly periodic array of closely
spaced necks is pervasive in this system over a wide range of system parameters. In all cases where such
an array appeared, the spacing between mid-points of the localization zones is approximately 3—4 times
h, but with large variation in the degree of thinning within each site.

Somewhat after the first appearance of the neck-precursors, the g-levels drop from ¢ = 0.8 to very
small levels in the regions between the growing neck-precursors, thus indicating an elastic unloading.
The irregularities in the spatial distribution here characterized as unstable necking thus reflect the
evolution within short ring-sectors each containing one initially rapid growing neck-precursor
surrounded by zones where elastic unloading takes place.

The sensitivity of the results to the imperfection distribution represented by mode number #z in
(30) is considered by calculating deformation evolution for cases with n =2 and n» =3 with all other
parameters being held at their default values; the results are shown in Figs. 7 and 8, respectively. As is
evident from these figures, the necks in these cases appear in the regions in which the ring wall is
initially thinnest. However, multiple closely spaced necks appear in these regions. Furthermore, the
growth of these necks seems to correspond to a reduction in strain rate at adjacent points.
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Fig. 7. Contours of constant normalized inelastic strain rate ¢ over the 0, t-plane. The end-state is shown as case (g) in Fig. I,
n=2,¢=0.01.
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Fig. 8. Contours of constant normalized inelastic strain rate ¢ over the 0, t-plane. The end-state is shown as case (h) in Fig. 1,
n=23,{=0.01.
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Additional results are shown in Fig. 9 in the form of contour plots of volume fraction f (parts (a), (c)
and (f)) and of temperature change (parts (b), (d) and (e)). These cases represent unstable neck
formation, nearly stable neck formation and stable neck formation, respectively. Fig. 9(g) shows level
curves of void volume fraction for the case when the amplitude of the imperfection is zero ({ =0).
Finally, Fig. 9(h) is included to provide a direct comparison of a result obtained with the present
viscoplastic material model with similar results obtained by Han and Tvergaard (1995) on the basis of a
rate-independent plasticity model. When the viscoplastic model was compared with their Fig. 5(d) using
2 =0 and f =0, it was found that m = 0.001 gave necking at the same sites as seen in Fig. 9(h), but
with some delay in time because the addition of strain rate hardening slows down the ring expansion.
With m = 0.002 necking occurred at the site of the imperfection. Other parameters used in the
comparison are E = 1.1 x 10" Pa, N = 1/30, v = 0.3, oo =200 x 10° Pa, p, = 8700 kg/m’, F =
3.45 x 10° N/kg, n =1 and & = 0.01.

For the default case (corresponding to Fig. 2(a)), Fig. 9(a) shows clearly that the fourth neck,
counting from 0 =0 at the right end of the segment, is the most developed site for ultimate ductile
fracture. The companion temperature profile in Fig. 9(b) shows large temperature increases throughout
the ring due to plastic dissipation, and particularly high temperatures in the most fully developed necks.

For Fig. 9(c) and its companion Fig. 9(d), the imperfection distribution mode number has been
increased to n=4 and, as a result, the process is seen to be nearly stable. Deformation thinning of the
wall occurs primarily at those locations where it was initially thinnest. However, at a late stage of the
deformation process, these slowly evolving necks abruptly split into closely spaced pairs of unstable
necks. Increasing the value of n to integers larger than four always led to stable neck formation. The
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0.05
B —— ———u

)

Fig. 9. Contours of constant void volume fraction f (a, ¢, f) and temperatures (b, d, e) (in °C) for deformed pvs-rings where
dynamic necking is unstable (a, b), nearly stable (c, d) and stable (e, f). Initial geometry /o/Ro=1/70 in all cases; n = 1, £=0.01,
t=786x10""sin (a) and (b); r = 529 x 10> s, n = 1, ¢=0.01 in (c) and (d); r = 5.14 x 107> s, n = 16, ¢=0.001 in (e) and
(f). The angular dimension 6 =0° at the right of the figures and 6=0,=22.5° at the left. In (g) no imperfection (¢ = 0.01) is present
(t = 4.99 x 1073 s). In (h) data from Han and Tvergaard (1995) were used, n =1, ¢ = 0.01 and r = 142 x 1075 s.
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case with n = 16 and & = 0.001 is illustrated in Fig. 9(e) and (f). It is seen that virtually identical necks
form at each location around the circumference at which the wall was initially thinnest due to the small
imperfection. This example also demonstrates the capability of the computational procedure to follow a
stable deformation far into the large strain regime.

Fig. 9(g) shows the contour plot of void volume fraction f at a value of hoop strain of AR/Ry = 0.375
for the case when the amplitude of the imperfection distribution is ¢ = 0. Evidently, the deformation has
remained uniform up to the mean strain of 0.375. With a very small imperfection of ¢ = 107°, necks
first appeared at average hoop strains AR/Ry in the range from 0.45-0.5. With higher strain rate
hardening (that is, higher values of m) and higher strain hardening (higher values of N), necking was
delayed to higher strain levels; for ¢ = 0, no visible necks had yet appeared at a value of AR/R close to
unity with m = 0.01 and N = 0.25.

The deformation history for two cases with stable necking (or nearly stable necking) are shown in the
form of contour plots of normalized average inelastic strain rate ¢ in Figs. 10 and 11. The end state for
the case in Fig. 10 corresponds to the plots in Figs. 9(c) and (d), for which n =4 and ¢ = 0.01. The
splitting of the neck-precursors into two separate necks is seen to occur at a very late time so that
necking is nearly stable in this case. The surface imperfections represented by n =8, ¢ =0.01 and n =
16, £ = 0.001 both lead to completely stable necking; the former case is illustrated in Fig. 11. The zones
of higher-than-average plastic strain rate (Fig. 11) show that necking becomes gradually more localized
with time, but an abrupt localization appears around 27 us. The common feature for the deformation
history plots in Figs. 10 and 11 is that neck development is initiated at the points around the
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Fig. 10. Contours of constant normalized inelastic strain rate ¢ over the 6, z-plane. Nearly stable neck development for the case
n=4,¢=0.01. The end-state corresponds to cases (c) and (d) in Fig. 9.
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Fig. 11. Contours of constant normalized inelastic strain rate ¢ over the 0, z-plane. Stable neck development; n =8, ¢ = 0.01.

circumference at which the wall is initially thinnest. The case with n =16 and ¢ =0.001 gave results
qualitatively identical to those in Fig. 11 where n =8 and ¢ = 0.01 and very similar to the case with
n =16, =0.01, so that the combination of small imperfection size and high mode number is sufficient
to trigger a stable type of localization.

The effect of variation in wall thickness is very significant in establishing the number of neck-
precursor, as shown in Figs. 12 and 13 for the cases of a thicker (4y/Ry = 1/35) and a thinner (ky/Ry =
1/140) ring, both with » =1 and & = 0.01. The thinner ring has 20 visible neck-precursors, the thicker
ring has only 7.5; these numbers are compared with the default case in Fig. 2 (hy/Ry = 1/70) which has
12.5. In general, the cases with thicker and the thinner rings show the same basic features for the
unstable necks reported above, namely, indication of a convective instability (i.e. gradual thinning) at
the site of the long wavelength imperfection (n =1, £ = 0.01) and a nearly periodic critical mode, but
irregular distribution of the necks which ultimately grow into ductile fractures.

4. Conclusions

Neck formation in rings subjected to a radial impulse of short duration was found to occur mainly by
either of two mechanisms, depending on the details of a continuous, periodic imperfection in wall
thickness and on material parameters. For lack of a better terminology, the mechanisms are termed
stable and unstable, and the essential qualities can be described in the following way. For a given
imperfection in wall thickness, a necking process is termed stable if necks evolve only from those sites
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Fig. 12. Unstable neck development in thick ring (#/Ry = 1/35) represented by contours of constant g-values over the 6, z-plane;
n=1,¢=0.01

around the circumference at which the wall thickness is initially minimum. This is the kind of behavior
expected if a ring is expanded under slow loading conditions. Nearly all cases of ring expansion show a
tendency toward stable neck formation in the early stages of plastic deformation. However, in cases with
long wavelength imperfections, the tendency toward stable (in this sense) necking gave rise to mean
inelastic strain rates at these sites only slightly higher than the back-ground rates, thus indicating that
the background velocity is too large to allow for neck-formation at these sites. This means that the
imperfection sensitivity of the material is suppressed by the background motion for these cases. Instead
the slow thinning that follows from these imperfections was interrupted in the later stages of plastic
deformation by the appearance of multiple necks with more or less regular spacing and which grew
relatively rapidly. The locations of these necks correlated only weakly, and in some cases not at all, with
the imperfection distribution. The necking process leading to formation of such necks is termed
unstable. The general observations are summarized below on the basis of this distinction.

For the impulse parameters used in the present investigation, stable neck formation was found to
occur for cases with a relatively large mode number n in the imperfection distribution. For the case
studied most thoroughly, with /y/Ry = 1/70 and & = 0.01, this was the predominant response mode for
n=4.

In cases with an imperfection with long wavelength (n < 4) and/or with small amplitude (£<0.01), an
array of more or less regularly spaced neck-precursors appeared around the circumference of the ring
relatively late in the process. The spacing of the necks in the array appeared to have little correlation
with the initial imperfection distribution in the wall. The irregularities in the spatial distribution
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Fig. 13. Unstable neck development in thin ring (%/Ry = 1/40) represented by contours of constant g-values over the 0, r-plane;
n=1,¢=0.01.

characteristic for unstable necking occurred when elastic unloading zones had developed around a neck-
precursor.

In cases where unstable neck formation occurred, the spacing of the individual neck-precursors was
about 3—4h. This feature was surprisingly insensitive to variations in material properties, except that the
appearance of this mode in some segments of the ring could be suppressed by making the strain
hardening parameter N greater than about 0.2.

Both plastic strain rate sensitivity and plastic strain dilation seemed to have only a minor influence on
development of unstable necks in this process.

There are far too many parameters in this system to permit a full parametric study of the connection
between parameter values and response mode. However, the present results are sufficient to establish a
mode of ductile fracture in materials subjected to rapid loading. It is intended to pursue the phenomena
introduced here through case studies motivated by particular physical systems.
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